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Abstract –– In this paper we present a 3-regions new 

economic geography model. We assume that the migration 

decisions of the mobile productive factor occur in between 

time intervals. The corresponding dynamic process is 

summarized by a two-dimensional dynamical map. We 

study this map identifying fours different types of fixed 

points, their local stability properties and their basins of 

attraction. We also present numerical simulations showing 

the existence of periodic and chaotic attractors.  

I. INTRODUCTION 

The footloose entrepreneurs (FE) model proposed by 

Forslid and Ottaviano (2003) is a variant of the well-known 

Core-Periphery (CP) model of Economic Geography proposed 

by the 2008 Nobel Prize Paul Krugman (see Krugman, 1991). 

The FE model maintains the basic structure of the CP model. 

The economy is composed of two symmetric/identical regions 

and two productive sectors: agriculture and manufacturing. 

The first is perfectly competitive, whereas in the second 

increasing returns prevails. Moreover, distance, in the form of 

transport costs, plays a crucial role in determining the price 

difference between locally produced and imported 

manufactured goods. Finally, both assume the existence of a 

mobile factor of production (labour in the CP model and 

entrepreneurs/human capital/skilled labour in the FE model) 

whose decisions to migrate affect both the location of the 

manufacturing sector and the size of the market. The main 

difference is that in the CP model the mobile factor enters in 

production both as a fixed and as a variable cost component; 

instead, in the FE model it enters only as a fixed cost 

component. This assumption reduces substantially the 

analytical complexity of the FE model. Both CP and FE 

models were originally framed in continuous time. More 

recently Currie and Kubin (2006) and Commendatore, Currie 

and Kubin (2008) presented discrete time versions of the CP 

and FE models, showing that while preserving many of the 

most interesting features of their continuous time counterparts 

(hysteresis, multiple equilibria, catastrophic changes) they 

enjoyed additional features simply due to the different time 

framework (chaotic dynamics, multiple attractors of any 

periodicity, agglomeration via volatility). The objective of this 

paper is to extend the discrete time version of the symmetric 

FE model presented in Commendatore, Currie and Kubin 

(2008) to the case of three regions. As stated recently by Fujita 

and Thisse (2009) the existence of more than two regions may 

involve effects that cannot emerge in a two regions context. It 

seems natural therefore to verify the emergence of these 

effects and of further dynamic effects in the discrete time 

version of the FE model when three regions are involved. This 

paper, that is concerned with the case of three symmetric 

regions – that is, the regions are identical except for the 

distribution of the manufacturing activity –, represents a step 

in this direction. 

II. BASIC FRAMEWORK 

The economic system is composed of three regions 

(r = 1, 2, 3). In each region an agricultural sector (A) and, 

potentially, a manufacturing sector (M) are localised. 

Production involves the use of two factors of production. 

Unskilled labour (L), that does not migrate, is equally 

distributed among the regions. Thus, 3L  unskilled workers 

reside in each region, where L is the total number of unskilled 

workers in the overall economy. Entrepreneurs (N), instead, 

are mobile across regions.  

The three regions are also characterised by the same tastes, 

technology and transport costs. The representative consumer’s 

utility function is: 
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where 
A

C  and 
M

C  correspond to the consumption of the 

homogeneous agricultural good and of a composite of 

manufactured goods:  
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where 
i

d  is the consumption of good i, n is the total number 

of manufactured goods and σ > 1 is the constant elasticity of 

substitution; the lower σ, the greater the consumers’ taste for 

variety. The exponents in the utility function 1 – µ  and µ 

indicate, respectively, the invariant shares of disposable 

income devoted to the agricultural and manufactured goods, 

with 0 < µ  < 1. 

The manufacturing sector involves Dixit-Stiglitz 

monopolistic competition. In our context, each firm requires a 

fixed input of an entrepreneur to operate and β units of 

unskilled labour for each unit produced. Since one 

entrepreneur is needed for each firm, the total number of firms 

always equals the total number of entrepreneurs. Moreover, 

because of consumers’ preference for variety and increasing 

returns in production, a firm would always produce a variety 

different from those produced by others. It follows that the 

number of varieties always equals the number of firms. 

Denoting the share of entrepreneurs located in region r in 



 2

period t by 
,r t

λ  and by N the total number of entrepreneurs, 

the number of regional varieties produced in period t in region 

r is  
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where r = 1, 2, 3, 
,
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Transportation of the agricultural product between regions 

is costless. Transport costs for manufactures take an iceberg 

form: if one unit is shipped between regions r and s 1
rs

T  

arrives, where 1
rs

T ≥ , , 1, 2,3r s =  and r s≠ . With identical 

trade costs among the regions, we have that  

 1 1
rs rr

T T for r s T otherwise= ≥ ≠ = .  

Finally, in order to simplify the notation, we introduce the 

“trade freeness” parameter, defined as 1

rs rs
T σφ −≡ .  

III. SHORT-RUN GENERAL EQUILIBRIUM 

The short-run equilibrium in period t is characterized by a 

given spatial allocation of entrepreneurs across the regions, 

,r t
λ . In a short-run general equilibrium, which is established 

instantaneously in each period, supply equals demand for the 

agricultural commodity and each manufacturer meets the 

demand for its variety. As a result of Walras’s law, 

simultaneous equilibrium in the product markets implies 

equilibrium in the regional labour markets.  

With zero transport costs, the agricultural price is the same 

across regions. Denoting by Y the income of the overall 

economy, that (as confirmed below) is invariant over time, 

total expenditure on the agricultural product is (1 )Yµ− . 

Assuming (1 ) 2 3Y Lµ− >  all regions produce the agricultural 

commodity. Since competition results in zero agricultural 

profits, the short-run equilibrium nominal wage in period t is 

equal to the agricultural product price and therefore is always 

the same across regions. Setting this wage/agricultural price 

equal to 1, it becomes the numeraire in terms of which the 

other prices are defined. Facing a wage of 1, each 

manufacturer has a marginal cost of β. Each maximizes profit 

on the basis of a perceived price elasticity of σ−  and sets a 

local (mill) price p for its variety, given by 
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The effective price paid by consumers in region r for a 

variety produced in region s is 
rs

pT . The regional 

manufacturing price index facing consumers in region r is 

given by  
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With identical trade costs across regions, we can write 
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The demand per variety in region r is 
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where 
,s t

Y  represents income and expenditure in region s in 

period t, 
, ,s t s t

s Y Y≡  denotes region s’ share in expenditure 

in period t and s = 1, 2, 3.  

Short-run general equilibrium in region r requires that each 

firm meets the demand for its variety. For a variety produced 

in region r,  

 
, ,r t r t
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where 
,r t

x  is the output of each firm located in region r. From 

equation (4), the short-run equilibrium operating profit per 

variety/entrepreneur in region r is  
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Since profit equals the value of sales times 1/σ and since total 

expenditure on manufacturers is µY, the total profit received 

by entrepreneurs is µY/σ. Total income is Y = L + µY/σ, so that  

 
L

Y
σ
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Total profit is therefore µL/(σ – µ). Equation (9) confirms that 

total income is invariant over time. From (9), (1 ) 2 3Y Lµ− >  

is equivalent to 2 3 0µ σ µσ+ − > . The latter is the (sufficient) 

non-full-specialization condition expressed in terms of the 

utility parameters.  

Using (4) to (9), the short-run equilibrium profit in region r 

is determined by the spatial distribution of entrepreneurs and 

the regional expenditure shares:  
13 3
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With identical trade costs across regions, we can write 
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Regional incomes/expenditures are 

 
, , ,

3
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L
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Using (4) to (13) and taking into account that 

3, 1, 2,
1

t t t
λ λ λ= − − , region r’s share in total expenditure 

,r t
s  

can be expressed in terms of 
1, t

λ  and 
2, t

λ : 
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1
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Given that the agricultural price is 1, the real income of an 

entrepreneur in region r is: 

 
, , ,r t r t r t

P
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IV. ENTREPRENEURIAL MIGRATION AND THE COMPLETE 

DYNAMICAL MODEL 

Taking into account the constraint 
, 1

0 1
r t

λ +≤ ≤ , the 

complete dynamical system is summarized by the following 

piecewise smooth two-dimensional map 
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where the explicit form of the central dynamic equations is 

obtained by mimicking the replicator dynamics, widely used 

in evolutionary game theory: 
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and where 
3, 1t

λ +  is residual to (complement to 1 with respect 

to) 
1, 1t

λ +  and 
2, 1t

λ + . More precisely: 
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According to the above equations, the migration of 

entrepreneurs at the transition between period t and period t+1 

depends on a comparison between the real income gained in a 

region and the weighted average of the incomes in all regions. 

V. FIXED POINTS – EXISTENCE, LOCAL STABILITY AND BASINS 

OF ATTRACTION 

In addition to the boundary fixed points, that are obvious from 

the specifications in equations (18) and (19), numerical 

explorations suggest that three other types of fixed points 

exist: 3-regions symmetric fixed points, 3-regions asymmetric 

fixed points and 2-regions symmetric fixed points. In the 

following figure 1, which depicts equations (18) and (19) 

(after inserting equation (20)) for 
, 1 ,i t i t

λ λ+ =  and for 

0.275φ = , 0.45µ =  and 2.5σ = , intersections of the lines 

determine fixed points of the dynamic system. 

*
2λ  

 

 
*

1λ  

  
Fig. 1. Fixed points of the dynamic system 

1. Boundary fixed points 

In the long-run all industrial activity is agglomerated only in 

one region, determining a so-called Core-Periphery (CP) or 

boundary equilibrium: 

 (1, 0, 0), (0, 1, 0), (0, 0, 1) 

The existence of this type of fixed points can be easily verified 

from equations (18) and (19) by substitution; the Jacobian 

evaluated at (1,0,0) is given by 
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Therefore, the two eigenvalues are identical and given by  
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This Eigenvalue is between –1 and +1 for  
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The following properties hold: 

a) for sufficiently low values of γ  the left hand inequality in 

expression (24) is satisfied and the Eigenvalue is greater than 

–1. More specifically, this inequality is satisfied for  

( ) ( )

, 1

1

21

6

3 2 (1 )
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µ σ

σ

σ
γ γ

σ φ φ µ σ σ µ φ
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b) for 1 1 2σ µ< < + <  the right hand inequality in expression 

(24) is always satisfied and the Eigenvalue is less than +1;  

c) for 1 1 µ σ< + <  it can be shown that the right hand 

inequality in expression (24) is satisfied for sufficiently high 

values of φ  and violated for low values. Therefore, in this 

case the Eigenvalue is less than +1 only for sufficiently high 

values of φ . It is not possible to explicitly specify the 

corresponding bifurcation value for trade freeness, , 1CPφ + . 
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2. 3-regions symmetric interior fixed points 

In the long-run equilibrium industrial activity is equally 

split among the three regions: 

 
1 1 1

, ,
3 3 3

 
 
 

 (26) 

The existence of this fixed point can be easily verified and 

its (local) stability can be determined by the Jacobian 

evaluated at this fixed point, which is given by 
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Therefore, the two eigenvalues are identical and given by:  
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The following properties hold: 

a) for 1 1 2σ µ< < + <  the Eigenvalue is greater than +1;  

b) for 1 1 µ σ< + < , the Eigenvalue is less than +1 for 

sufficiently low values of φ , in particular for  
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and the Eigenvalue is greater than –1 for sufficiently low 

values of γ ; in particular for: 
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where the inequality 3 , 1 0sγ − >  can be easily verified. 

3. 3-regions asymmetric interior fixed points 

The industrial activity takes place in all three regions. Two 

regions exhibit the same share of industrial activity, whereas 

the other region exhibits a different share: 
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From now on we concentrate our discussion on the first 

asymmetric fixed point, by symmetry its properties apply also 

to the other two. The asymmetric fixed point 
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 satisfies the following condition:  
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It is not possible to derive an explicit expression for the 

asymmetric fixed point or a manageable expression for the 

Jacobian evaluated at this fixed point. However, it can be 

shown analytically that for , 1CPφ φ +=  the asymmetric fixed 

point coincides with the boundary fixed point (1, 0, 0). In 

addition, numerical explorations suggest the following 

properties: 

A) for , 1CPφ φ +<  no 3-regions asymmetric fixed point exists; 

B) for , 1 3 , 1CP sφ φ φ+ +< <  one 3-regions asymmetric fixed 

point exists; 

C) for 3 , 1sφ φ+ <  one, two or no 3-regions asymmetric fixed 

point exists. 

The following figure 2 depicts ( )*

1 , , ,Fpa λ µ φ σ  for 

0.45µ = , 2.5σ =  and for different values of φ  and 

illustrates the existence properties (for better visibility 

( )*

11000 , , ,Fpa λ µ φ σ⋅  is plotted; note that the 3-regions 

symmetric fixed point is visible as well). 

, 1
0.235

CPφ φ +
= =  

 

, 1 3 , 10.275CP sφ φ φ+ +< = <   

0 0.2 0.4 0.6 0.8
10−

0

10

20

 

 

3 , 1
0.285

sφ φ +
= =  

 

3 , 1 0.2895sφ φ+ < =  

 

  
Fig. 2. Existence of 3-regions asymmetric fixed points  

4. 2-regions interior fixed points 

In the long-run equilibrium, industrial activity is equally 

shared between two regions, whereas in the third one 

industrial activity is absent: 

 (0.5, 0.5, 0) (0.5, 0, 0.5) (0, 0.5, 0.5) (32) 

The existence of this type of fixed point can easily be 

confirmed analytically. 

The two distinct eigenvalues of the Jacobian evaluated at the 

fixed point can be determined explicitly and are given by:  
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1
2 21
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2 2 4
1 1

1 6
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µ σ

σφ σ µ µφ σφ µφ σφ
γ

φ σ

+ −

−
 

  − + + − + = − −   +  
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It is possible to show that both eigenvalues are larger than –1 

for a sufficiently low γ . However, numerical explorations 

suggest that for all parameter values at least one of the two 

eigenvalues is greater than +1. Therefore, it seems that this 

fixed point is never stable. 
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5. Summary of local stability properties and basins of 

attraction for fixed points 

Given a sufficiently low value of γ  both the Eigenvalues 

for the 3-regions symmetric equilibrium, for the 2-regions 

equilibrium and for the boundary equilibrium are greater than 

–1. For the +1 threshold we have the following: 

 
CP 

equlibrium 

3-regions 

symmetric 

equilibrium 

3-regions 

asymmetric 

equilibrium, 

2-regions 

symmetric 

equilibrium 

1 1σ µ< < +

 

EV<+1 

always 

EV>+1 

always 
Never 

stable 1 1 µ σ< + <

 

EV<+1 for 
, 1CPφ φ +>   

EV<+1 for 
3 , 1sφ φ +<  

Tab. 1. Local stability properties of fixed points 

Therefore, for 1 1 µ σ< + <  it is possible that both the 

boundary and the 3-regions symmetric equilibrium are 

(locally) stable. Figure 3 illustrates this possibility for σ = 2.5. 

In the top left diagram values of φ  below the dotted line 

imply stability of the 3-regions symmetric equilibrium and 

above the solid line imply stability of the boundary 

equilibrium. Therefore, parameter values in between the two 

lines represent the parameter set for which both the boundary 

and the 3-regions symmetric equilibrium are locally stable 

(provided the value of γ  is sufficiently low). The coloured 

diagrams, drawn for 10γ =  and 0.45µ = ;
1
 and for 0.25φ = , 

0.275φ =  and 0.3φ =  respectively, illustrate the basins of 

attraction. The abscissa represents the initial value for 
1

λ  and 

the ordinate that one for 
2

λ ; a yellow tile indicates initial 

conditions for time paths converging to the 3-regions 

symmetric equilibrium; the other tiles represent initial 

conditions for time paths converging to the three boundary 

equilibria represented by the corners of the triangle. The black 

points indicate the (numerically determined) 3-regions 

asymmetric fixed points.  

As shown figure 3, these asymmetric fixed points enjoy the 

following properties: when , 1CPφ φ +=  they appear 

simultaneously on the three vertexes of the triangle. As trade 

freeness is increased in the range , 1 3 , 1CP sφ φ φ+ +< <  they travel 

along the medians towards the centroid of the triangle where, 

at 3 , 1sφ φ += , they merge with the 3-regions symmetric 

equilibrium. As φ is further increased three distinct 

asymmetric equilibriums reappear doubling in number as they 

move towards the midpoint of the triangle sides where their 

number halves again. Finally, a further increase of the trade 

freeness parameter determines their disappearance.  

                                                           
1 This value of µ is close to the value that violates the non-full 

specialization condition ( )3 2 5 11µ σ σ< − = . 

We conjecture that for , 1 3 , 1CP sφ φ φ+ +< <  the stable 

manifolds of the 3-regions asymmetric equilibria delimitate 

the basin of attraction of the 3-regions symmetric equilibrium. 

Indeed, for 0.25φ =  and 0.275φ =  (both values lie below 

3 , 1 0.285sφ + ≈ ) the boundary equilibria are (locally) stable as 

well as the 3-regions symmetric equilibrium; the basin of 

attraction for the latter (former) shrinks (expands) as φ  

increases. In that parameter range three (locally unstable) 3-

regions asymmetric equilibria exist.  

For 0.2895φ =  and 0.3φ =  (both values greater than 

3 , 1sφ + ) the boundary equilibria are still (locally) stable but the 

3-regions symmetric equilibrium is locally unstable; in 

correspondence of this parameter values, there exist two pairs 

of (locally unstable) 3-regions asymmetric equilibria and no 

such an equilibrium, respectively. For this case the figure 

suggests that the respective basins of attraction of the 

boundary equilibria are delimitated by segments of the triangle 

medians as follows: 

 For    
1

1
0

3
λ< <           1

2 3 2

1
,

2

λ
λ λ λ

−
= =  (33) 

 for    
1

1 1

3 2
λ< <           

2 1 3 1
1 2 ,λ λ λ λ= − =  (34) 

 for    
1

1 1

3 2
λ< <           

2 1 3 1
, 1 2λ λ λ λ= = −  (35) 

 
Basin of attraction for 

 

1 1 1
, ,

3 3 3

 
 
 

: yellow 

 

( )1,0,0 : red 

( )0,1,0 : blue 

( )0,0,1 : green 

  

 

 

φ

µ

0.25φ = 0.275φ =

0.2895φ = 0.3φ =

 

Fig. 3. Fixed points stability properties and basins of attraction 

VI. PERIODIC AND COMPLEX ATTRACTORS 

From equation (28) a limiting value for φ  can be 

determined at which the symmetric 3-regions equilibrium 

loses stability via a flip bifurcation:  



 6

( )( ) ( )
( ) ( )( )( ) ( )

( )( ) ( ) ( )

( ) ( )( )( ) ( )

3 , 1

2 22 2 2 2 2

1 2 1 8 13
1

2 4 1 8 1 2

4 2 1 4 1 2 1

4 1 8 1 2

s
µ σ γ σ σ µ

φ
µ γ σ γ σ γµ µ

µ γσ σ γµ σ γ µ σ

µ γ σ γ σ γµ µ

− − − − − −
= + −

− + − − + +

+ − + − + −
−

− + − − + +

 (36) 

The bifurcation diagram in figure 4, drawn for 8σ = , 

0.25µ = , 5γ =  (implying 0.1466
Flip

sym
φ ≈ ), and for 

0.1 0.15φ≤ ≤  illustrates possible dynamic patterns after a flip 

bifurcation.  

1λ  

 

2λ  

 

3λ  

 

 φ  

  
Fig.4. Dynamic behavior after a flip bifurcation 

Figure 5 illustrates the dynamic behaviour for particular 

values of φ ; red lines (dots) indicate 
1

λ , blue lines (dots) 
2

λ , 

and green lines (dots) 
3

λ . For 0.145φ =  the time path for all 

three share exhibits a period-2 cycle; the cycles for 
2

λ  and 
3

λ  

are identical and exhibit a lower amplitude than the cycle for 

1
λ . 

For 0.135φ = , 
3

λ  is constant, only 
1

λ  and 
2

λ  follows 

period-2 cycles (identical but with a phase shift). 

For lower values of φ the dynamic behaviour gets 

increasingly complex: the bottom panels plot 
,i t

λ  on the 

abscissa and 
, 1i t

λ +  on the ordinate. 

For 0.105φ = , all three shares settle down on complex 

attractors, 
1

λ  and 
2

λ  on the same two parts attractor; 
3

λ  on a 

one part attractor with a lower amplitude. 

For 0.1φ = , all three shares settle down on the same one 

part attractor. 

  

0.145φ =  0.135φ =  

  

0.105φ =  0.1φ =  

  
Fig. 5. Time paths and attractors 

In figure 6 (which has be plotted for µ = 0.35, σ = 0.8 and 

initial condition 
1, 0

0.334λ = , 
2, 0

0.333λ =  and
3, 0

0.333λ = ), 

we present bifurcation diagrams for 
1, t

λ , 
2, t

λ  and 
3, t

λ  and for 

0.35 0.55φ≤ ≤ .  

1λ  

 

2
λ  

 

3λ  

 

 φ  

  
Fig. 6. Bifurcation diagrams with different sets of attractors 

Note that the (symmetric) 3-regions dynamics involves 

regions two and three notwithstanding the initial condition 

gives a smaller advantage to region 1. Moreover, there appear 

to be two sets of attractors – one created via the bifurcation of 

the interior 3-regions fixed point, and another one born via a 

bifurcation of the 2-regions symmetric fixed point, the latter 

being visible in the complex 2-regions dynamics. Finally, for a 

low φ, industrial activity is agglomerated only in one region. 
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